Metapopulation connectivity in Voles (Microtus sp.) as a gauge for tallgrass prairie restoration in midwestern North America

Author:

Douglas Marlis R.ORCID,Anthonysamy Whitney J.B.,Davis Mark A.,Mulligan Matthew P.,Schooley Robert L.,Louis Wade,Douglas Michael E.ORCID

Abstract

AbstractApplying quantifiable metrics to validate the success of restoration efforts is crucial for ongoing management programs in anthropogenically fragmented habitats. Estimates of dispersal can provide such baseline data because they measure not only the extent to which restored patches are colonized and interconnected, but also their metapopulation source/sink dynamics. In this context, we estimated dispersal and population connectivity among prairie (Microtus ochrogaster; N=231) and meadow vole (M. pennsylvanicus; N=83), sampled from eight restored plots at five tallgrass prairie sites embedded within the agricultural matrix of midwestern North America. Our expectation was that extensive distances separating these restored habitats (i.e., 48–246 km) would spatially isolate vole metapopulations, resulting in significant genetic differentiation. We first used molecular taxonomy to validate the field-identifications of all sampled individuals, then used pairwise FST derived from 15 microsatellite DNA loci to estimate genetic connectivity among the species-delimited study populations. Metapopulation stability was gauged by assessing migration rates and deriving effective population sizes (Ne). We also calculated relatedness values (r) as a potential surrogate for contact in prairie vole, a primary vector for Lyme disease. Molecular species-assignments contravened field-identifications in 25% of samples (11 prairie/67 meadow) and identified two instances of species-hybridization (0.6%). Local effects (i.e., population crash/drought) were manifested at two sites, as documented by significant temporal declines in Ne and r. Overall, high migration rates and non-significant (10/15) pairwise FST values underscored elevated metapopulation connectivity. A single site that recorded five significant FST values also displayed significant r-values indicating the inadvertent sampling of closely related individuals. This highlights the close social groupings among cooperatively-breeding prairie vole that can exacerbate Lyme disease transmission. Thus, while elevated population connectivity aligns with prairie restoration goals, it also reinforces a need in adaptive management to evaluate environmental matrices for their permeability to vector-borne diseases.

Publisher

Cold Spring Harbor Laboratory

Reference81 articles.

1. Andrewartha HG , Birch LC. The Distribution and Abundance of Animals. University of Chicago Press, Illinois. 1954

2. Rapid Range Shifts of Species Associated with High Levels of Climate Warming

3. Crooks KR , Sanjayan M (eds). Connectivity Conservation. Cambridge University Press, Cambridge UK. 2006

4. The Anthropocene concept in ecology and conservation

5. Toward a strategy for the conservation and protection of the world’s temperate grasslands;Great Plains Res,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3