Opportunities and limits of combining microbiome and genome data for complex trait prediction

Author:

Pérez-Enciso MiguelORCID,Zingaretti Laura M.ORCID,Ramayo-Caldas YuliaxisORCID,de los Campos GustavoORCID

Abstract

AbstractThe analysis and prediction of complex traits using microbiome data combined with host genomic information is a topic of utmost interest. However, numerous questions remain to be answered: How useful can the microbiome be for complex trait prediction? Are microbiability estimates reliable? Can the underlying biological links between the host’s genome, microbiome, and the phenome be recovered? Here, we address these issues by (i) developing a novel simulation strategy that uses real microbiome and genotype data as input, and (ii) proposing a variance-component approach which, in the spirit of mediation analyses, quantifies the proportion of phenotypic variance explained by genome and microbiome, and dissects it into direct and indirect effects. The proposed simulation approach can mimic a genetic link between the microbiome and SNP data via a permutation procedure that retains the distributional properties of the data. Results suggest that microbiome data could significantly improve phenotype prediction accuracy, irrespective of whether some abundances are under direct genetic control by the host or not. Overall, random-effects linear methods appear robust for variance components estimation, despite the highly leptokurtic distribution of microbiota abundances. Nevertheless, we observed that accuracy depends in part on the number of microorganisms’ taxa influencing the trait of interest. While we conclude that overall genome-microbiome-links can be characterized via variance components, we are less optimistic about the possibility of identifying the causative effects, i.e., individual SNPs affecting abundances; power at this level would require much larger sample sizes than the ones typically available for genome-microbiome-phenome data.Author summaryThe microbiome consists of the microorganisms that live in a particular environment, including those in our organism. There is consistent evidence that these communities play an important role in numerous traits of relevance, including disease susceptibility or feed efficiency. Moreover, it has been shown that the microbiome can be relatively stable throughout an individual’s life and that is affected by the host genome. These reasons have prompted numerous studies to determine whether and how the microbiome can be used for prediction of complex phenotypes, either using microbiome alone or in combination with host’s genome data. However, numerous questions remain to be answered such as the reliability of parameter estimates, or which is the underlying relationship between microbiome, genome, and phenotype. The few available empirical studies do not provide a clear answer to these problems. Here we address these issues by developing a novel simulation strategy and we show that, although the microbiome can significantly help in prediction, it will be difficult to retrieve the actual biological basis of interactions between the microbiome and the trait.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3