On the complex interplay between spectral harmonicity and different types of cross frequency couplings in non linear oscillators and biologically plausible neural network models

Author:

Dellavale DamiánORCID,Velarde Osvaldo MatíasORCID,Mato GermánORCID,Urdapilleta EugenioORCID

Abstract

AbstractBackgroundCross-frequency coupling (CFC) refers to the non linear interaction between oscillations in different frequency bands, and it is a rather ubiquitous phenomenon that has been observed in a variety of physical and biophysical systems. In particular, the coupling between the phase of slow oscillations and the amplitude of fast oscillations, referred as phase-amplitude coupling (PAC), has been intensively explored in the brain activity recorded from animals and humans. However, the interpretation of these CFC patterns remains challenging since harmonic spectral correlations characterizing non sinusoidal oscillatory dynamics can act as a confounding factor.MethodsSpecialized signal processing techniques are proposed to address the complex interplay between spectral harmonicity and different types of CFC, not restricted only to PAC. For this, we provide an in-depth characterization of the Time Locked Index (TLI) as a novel tool aimed to efficiently quantify the harmonic content of noisy time series. It is shown that the proposed TLI measure is more robust and outperform traditional phase coherence metrics (e.g. Phase Locking Value, Pairwise Phase Consistency) in several aspects.ResultsWe found that a non linear oscillator under the effect of additive noise can produce spurious CFC with low spectral harmonic content. On the other hand, two coupled oscillatory dynamics with independent fundamental frequencies can produce true CFC with high spectral harmonic content via a rectification mechanism or other post-interaction nonlinear processing mechanisms. These results reveal a complex interplay between CFC and harmonicity emerging in the dynamics of biologically plausible neural network models and more generic non linear and parametric oscillators.ConclusionsWe show that, contrary to what is usually assumed in the literature, the high harmonic content observed in non sinusoidal oscillatory dynamics, is neither sufficient nor necessary condition to interpret the associated CFC patterns as epiphenomenal. There is mounting evidence suggesting that the combination of multimodal recordings, specialized signal processing techniques and theoretical modeling is becoming a required step to completely understand CFC patterns observed in oscillatory rich dynamics of physical and biophysical systems.HighlightsTime locked index efficiently quantifies the harmonic content of noisy time series.A non linear oscillator under the effect of additive noise can produce spurious cross frequency couplings (CFC) with low spectral harmonic content.Two coupled oscillatory dynamics with independent fundamental frequencies can produce true CFC with high spectral harmonic content via rectification mechanisms or other post-interaction nonlinear processing mechanisms.A non sinusoidal oscillatory dynamics with high harmonic content is neither sufficient nor necessary condition for spurious CFC.A complex interplay between CFC and harmonicity emerges from the dynamics of nonlinear, parametric and biologically plausible oscillators.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Instantaneous Frequency Estimation in ECG Signals;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3