The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae

Author:

Meijsing Sebastiaan H.,Ehrenhofer-Murray Ann E.

Abstract

The acetylation state of histones plays a central role in determining gene expression in chromatin. The reestablishment of the acetylation state of nucleosomes after DNA replication and chromatin assembly requires both deacetylation and acetylation of specific lysine residues on newly incorporated histones. In this study, the MYST family acetyltransferase Sas2 was found to interact with Cac1, the largest subunit of Saccharomyces cerevisiae chromatin assembly factor-I (CAF-I), and with the nucleosome assembly factor Asf1. The deletions ofCAC1 (cac1Δ), ASF1 (asf1Δ), andSAS2 (sas2Δ) had similar effects on gene silencing and were partially overlapping. Furthermore, Sas2 was found in a nuclear protein complex that included Sas4 and Sas5, a homolog of TAFII30. This complex, termed SAS-I, was also found to contribute to rDNA silencing. Furthermore, the observation that a mutation of H4 lysine 16 to arginine displayed the identical silencing phenotypes as sas2Δ suggested that it was the in vivo target of Sas2 acetylation. In summary, our data present a novel model for the reestablishment of acetylation patterns after DNA replication, by which SAS-I is recruited to freshly replicated DNA by its association with chromatin assembly complexes to acetylate lysine 16 of H4.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3