Abstract
AbstractAlthough extensive prior work has characterized cuticle composition, function, ultrastructure and development in many plant species, much remains to be learned about how these features are interrelated. Moreover, very little is known about the adult maize leaf cuticle in spite of its significance for agronomically important traits in this major crop. We analyzed cuticle composition, ultrastructure, and permeability along the developmental gradient of partially expanded adult maize leaves to probe the relationships between these features. The water barrier property is acquired at the cessation of cell expansion. Wax types and chain lengths accumulate asynchronously along the developmental gradient, while overall wax load does not vary. Cutin begins to accumulate prior to establishment of the water barrier and continues thereafter. Ultrastructurally, pavement cell cuticles consist of an epicuticular layer, a thin cuticle proper that acquires an inner, osmiophilic layer during development, and no cuticular layer. Cuticular waxes of the adult maize leaf are dominated by alkanes and wax esters localized mainly in the epicuticular layer. Establishment of the water barrier coincides with a switch from alkanes to esters as the major wax type, and the emergence of an osmiophilic (likely cutin-rich) layer of the cuticle proper.Higlight statementChemical, ultrastructural and functional analysis of cuticle development in partially expanded adult maize leaves revealed important roles for wax esters and an osmiophilic, likely cutin-rich, layer in protection from dehydration.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献