Oculomotor nerve requires an early interaction with muscle precursors for nerve guidance and branch patterning

Author:

Bjorke Brielle,Weller Katherine G.,Robinson G. EricORCID,Vesser MichelleORCID,Chen Lisheng,Gage Philip J.ORCID,Gould Thomas W.ORCID,Mastick Grant S.ORCID

Abstract

AbstractMuscle function is dependent on innervation by the correct motor nerves. Motor nerves are composed of motor axons that extend through peripheral tissues as a compact bundle, but then diverge to create nerve branches to specific muscle targets. A transition point typically occurs as motor nerves grow near their targets, where the fasciculated nerve halts further growth, then later initiates branching to muscles. The motor nerve transition point is potentially an intermediate target acting as a guidepost to present specific cellular and molecular signals for navigation. Here we describe the navigation of the oculomotor nerve with respect to eye muscle precursor cells in mouse embryos. We found that the oculomotor nerve initially grew to the eye three days prior to the appearance of any eye muscles. The oculomotor axons spread to form a plexus within a mass of eye muscle precursors, then the nerve growth paused for more than two days. This plexus persisted during primary extraocular myogenesis, with a subsequent phase in which the nerve branched out to specific muscles. To test the functional significance of the nerve-precursor contact in the plexus, we genetically ablated muscle precursors early in nerve development, prior to nerve contact. Ablation of muscle precursors resulted in oculomotor nerve fibers failing to stop to form the plexus, but instead growing past the eye. In contrast, ablating the precursor pool at later stages, after the nerve has contacted the precursor cells, results in ectopic branching restricted near the eye. These results demonstrate that muscle precursors act as an intermediate target for nerve guidance, and are required for the oculomotor nerve to transition between nerve growth and distinct stages of terminal axon branching.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3