The structure of a hibernating ribosome in a Lyme disease pathogen

Author:

Sharma Manjuli R.ORCID,Manjari Swati R.ORCID,Agrawal Ekansh K.,Keshavan PoojaORCID,Koripella Ravi K.ORCID,Majumdar SoneyaORCID,Marcinkiewicz Ashley L.ORCID,Lin Yi-PinORCID,Agrawal Rajendra K.ORCID,Banavali Nilesh K.ORCID

Abstract

AbstractThe spirochete bacterial pathogenBorrelia(Borreliella) burgdorferi(Bbu) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target theBburibosome. We determined the structure of theBbu70S ribosome by single particle cryo-electron microscopy (cryo-EM) at a resolution of 2.9 Å, revealing its distinctive features. In contrast to a previous study suggesting that the single hibernation promoting factor protein present inBbu(bbHPF) may not bind to its ribosome, our structure reveals a clear density for bbHPF bound to the decoding center of the small ribosomal 30S subunit. The 30S subunit has a non-annotated ribosomal protein, bS22, that has been found only in mycobacteria and Bacteroidetes so far. The protein bL38, recently discovered in Bacteroidetes, is also present in theBbularge 50S ribosomal subunit. The protein bL37, previously seen only in mycobacterial ribosomes, is replaced by an N-terminal α-helical extension of uL30, suggesting that the two bacterial ribosomal proteins uL30 and bL37 may have evolved from one longer uL30 protein. The longer uL30 protein interacts with both the 23S rRNA and the 5S rRNA, is near the peptidyl transferase center (PTC), and could impart greater stability to this region. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energies are predicted for antibiotics, bound to the decoding center or PTC and are in clinical use for Lyme disease, that account for subtle distinctions in antibiotic-binding regions in theBburibosome structure. Besides revealing unanticipated structural and compositional features for theBburibosome, our study thus provides groundwork to enable ribosome-targeted antibiotic design for more effective treatment of Lyme disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3