Abstract
ABSTRACTCell type annotation is an essential step in single-cell RNA-seq analysis. However, it is a time-consuming process that often requires expertise in collecting canonical marker genes and manually annotating cell types. Automated cell type annotation methods typically require the acquisition of high-quality reference datasets and the development of additional pipelines. We assessed the performance of GPT-4, a highly potent large language model, for cell type annotation, and demonstrated that it can automatically and accurately annotate cell types by utilizing marker gene information generated from standard single-cell RNA-seq analysis pipelines. Evaluated across hundreds of tissue types and cell types, GPT-4 generates cell type annotations exhibiting strong concordance with manual annotations and has the potential to considerably reduce the effort and expertise needed in cell type annotation. We also developed GPTCelltype, an open-source R software package to facilitate cell type annotation by GPT-4.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献