Spatial proteomics of human diabetic kidney disease, from health to class III

Author:

Kondo Ayano,McGrady Monee,Nallapothula Dhiraj,Ali Hira,Trevino Alexandro E.,Lam Amy,Preska Ryan,D’Angio H. Blaize,Wu Zhenqin,Lopez Lauren,Badhesha Harshanna Kaur,Vargas Chenoa Rochel,Ramesh Achyuta,Wiegley Nasim,Han Seung Seok,Dall’Era Marc,Jen Kuang-Yu,Mayer Aaron T.,Afkarian MaryamORCID

Abstract

ABSTRACTAims/HypothesisDiabetic kidney disease (DKD) remains a significant cause of morbidity and mortality in people with diabetes. Though animal models have taught us much about the molecular mechanisms of DKD, translating these findings to human disease requires greater knowledge of the molecular changes caused by diabetes in human kidneys. Establishing this knowledge base requires building carefully curated, reliable, and complete repositories of human kidney tissue, as well as tissue proteomics platforms capable of simultaneous, spatially resolved examination of multiple proteins.MethodsWe used the multiplexed immunofluorescence platform CO-Detection by indexing (CODEX) to image and analyze the expression of 21 proteins in 23 tissue sections from 12 individuals with diabetes and healthy kidneys (DM, 5 individuals), DKD classes IIA, and IIB (2 individuals per class), IIA-B intermediate (2 individuals), and III (one individual).ResultsAnalysis of the 21-plex immunofluorescence images revealed 18 cellular clusters, corresponding to 10 known kidney compartments and cell types, including proximal tubules, distal nephron, podocytes, glomerular endothelial and peritubular capillaries, blood vessels, including endothelial cells and vascular smooth muscle cells, macrophages, cells of the myeloid lineage, broad CD45+ inflammatory cells and the basement membrane. DKD progression was associated with co-localized increase in collagen IV deposition and infiltration of inflammatory cells, as well as loss of native proteins of each nephron segment at variable rates. Compartment-specific cellular changes corroborated this general theme, with compartment-specific variations. Cell type frequency and cell-to-cell adjacency highlighted (statistically) significant increase in inflammatory cells and their adjacency to tubular and αSMA+ cells in DKD kidneys. Finally, DKD progression was marked by substantial regional variability within single tissue sections, as well as variability across patients within the same DKD class. The sizable intra-personal variability in DKD severity impacts pathologic classifications, and the attendant clinical decisions, which are usually based on small tissue biopsies.Conclusions/InterpretationsHigh-plex immunofluorescence images revealed changes in protein expression corresponding to differences in cellular phenotypic composition and microenvironment structure with DKD progression. This initial dataset demonstrates the combined power of curated human kidney tissues, multiplexed immunofluorescence and powerful analysis tools in revealing pathophysiology of human DKD.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3