Author:
Mamais Adamantios,Sanyal Anwesha,Fajfer Austin,Zykoski Catherine G.,Guldin Michael,Riley-DiPaolo Alexis,Subrahmanian Nitya,Gibbs Whitney,Lin Steven,LaVoie Matthew J.
Abstract
AbstractMutations in the LRRK2 gene cause familial Parkinson’s disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge toward a pathogenic increase in LRRK2 kinase activity. A subset of small Rab GTPases have been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in Rab inactivation. We used CRISPR/Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well validated LRRK2 substrates, Rab8a and Rab10, from two independent, deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed divergent effects of Rab8a and Rab10 deficiency on lysosomal pH, LAMP1 association with Golgi, α-synuclein insolubility and tau phosphorylation, while parallel effects on lysosomal numbers and Golgi clustering were observed. Our data demonstrate largely antagonistic effects of genetic Rab8a or Rab10 inactivation which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation.HighlightsRab8a and Rab10 deficiency induce lysosomal and Golgi defectsRab8a and Rab10 deficiency induce opposing effects on lysosomal pHRab8a KO and Rab10 KO neurons show divergent effects on synuclein and tau proteostasisInactivation of different Rab GTPases can induce distinct disease-relevant phenotypes
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献