Spatial transcriptomics reveal pitfalls and opportunities for the detection of rare high-plasticity breast cancer subtypes

Author:

Coutant Angèle,Cockenpot Vincent,Muller Lauriane,Degletagne Cyril,Pommier Roxane,Tonon Laurie,Ardin Maude,Michallet Marie-Cécile,Caux Christophe,Laurent Marie,Morel Anne-Pierre,Saintigny Pierre,Puisieux Alain,Ouzounova Maria,Martinez PierreORCID

Abstract

AbstractBreast cancer is one of the most prominent types of cancers, in which therapeutic resistance is still a major clinical hurdle. Specific subtypes like Claudin-low (CL) and metaplastic breast cancers (MpBC) have been associated with high non-genetic plasticity, which can facilitate resistance. The overlaps and differences between these orthogonal subtypes, respectively identified by molecular and histopathological analyses, are however still insufficiently characterised. Adequate methods to identify high-plasticity tumours to better anticipate resistance are furthermore still lacking. Here we analysed 11 triple negative breast tumours, including 3 CL and 4 MpBC samples,viahigh-resolution spatial transcriptomics. We combined pathological annotations and deconvolution approaches to precisely identify tumour spots, on which we performed signature enrichment, differential expression and copy-number analyses. We used the TCGA and CCLE public databases for external validation of expression markers. By levying spatial transcriptomics to focus analyses only to tumour cells in MpBC samples, and therefore bypassing the negative impact of stromal contamination, we could identify specific markers that are not expressed in other subtypes nor stromal cells. Three markers (BMPER, POPDC3andSH3RF3) could furthermore be validated in external expression databases encompassing bulk tumour material and stroma-free cell lines. We find that existing bulk expression signatures of high-plasticity breast cancers are relevant in mesenchymal transdifferentiated compartments but can be hindered by stromal cell prevalence in tumour samples, negatively impacting their clinical applicability. Spatial transcriptomics analyses can however help identify more specific expression markers, and could thus enhance diagnosis and clinical care of rare high-plasticity breast cancers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3