Abstract
AbstractAgrochemicals have been successfully repurposed to control mosquitoes worldwide, but pesticides used in agriculture challenge their effectiveness by contaminating surface waters and helping larval populations develop resistance. Thus, knowledge of the lethal and sublethal effects of residual pesticide exposure on mosquitoes is critical for selecting effective insecticides. Here we implemented a new experimental approach to predict the efficacy of agricultural pesticides newly repurposed for malaria vector control. We mimicked insecticide resistance selection as it occurs in contaminated aquatic habitats by rearing field-collected mosquito larvae in water containing a dose of insecticide capable of killing individuals from a susceptible strain within 24 h. We then simultaneously monitored short-term lethal toxicity within 24 h and sublethal effects for 7 days. We found that due to chronic exposure to agricultural pesticides, some mosquito populations are currently pre-adapt to resist neonicotinoids if those were used in vector control. Larvae collected from rural and agricultural areas where neonicotinoid formulations are intensively used for insect pest management were able to survive, grow, pupate and emerge in water containing a lethal dose of acetamiprid, imidacloprid or clothianidin. These results emphasize the importance of addressing exposure of larval populations to formulations applied in agriculture prior to using agrochemicals against malaria vectors.
Publisher
Cold Spring Harbor Laboratory