Immune cells employ intermittent integrin-mediated traction forces for 3D migration

Author:

Czerwinski Tina,Bischof Lars,Böhringer DavidORCID,Kara Sibel,Wittmann Ernst,Winterl Alexander,Gerum RichardORCID,Nusser Gina,Wiesinger Manuel,Budday SilviaORCID,Lux Anja,Voskens Caroline,Fabry BenORCID,Mark ChristophORCID

Abstract

To reach targets outside the bloodstream, immune cells can extravasate and migrate through connective tissue. During tissue infiltration, immune cells migrate in an amoeboid fashion, characterized by weak matrix adhesions and low traction forces, that allows them to achieve high migration speeds of up to 10 μm/min. How immune cells reconcile amoeboid migration with the need to overcome steric hindrance in dense matrices is currently not understood. Here we show that when confronted with steric hindrance, immune cells can switch from their default amoeboid migration mode to a highly contractile, mesenchymal-like migration mode. We use time-lapse confocal reflection microscopy to obtain simultaneous measurements of migration speed, directional persistence, and cell contractility in 3D biopolymer networks. We find that NK92 (natural killer) cells are highly mechanoresponsive and exert substantial acto-myosin driven, integrin-mediated contractile forces of up to 100 nN on the extracellular matrix during short contractile phases. This burst-like contractile behavior is also found in primary B, T, NK cells, neutrophils, and monocytes, and is specifically used by the cells to avoid getting stuck in narrow pores of the surrounding matrix. Our results demonstrate that steric hindrance guides the rapid regulation of integrin-mediated adhesion to the ECM in a large number of immune cell subtypes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3