Exploring the natural origins of SARS-CoV-2 in the light of recombination

Author:

Lytras SpyrosORCID,Hughes JosephORCID,Martin Darren,de Klerk Arne,Lourens Rentia,Kosakovsky Pond Sergei L,Xia Wei,Jiang XiaoweiORCID,Robertson David LORCID

Abstract

The lack of an identifiable intermediate host species for the proximal animal ancestor of SARS-CoV-2, and the large geographical distance between Wuhan and where the closest evolutionary related coronaviruses circulating in horseshoe bats (Sarbecoviruses) have been identified, is fuelling speculation on the natural origins of SARS-CoV-2. We have comprehensively analysed phylogenetic relations between SARS-CoV-2, and the related bat and pangolin Sarbecoviruses sampled so far. Determining the likely recombination events reveals a highly reticulate evolutionary history within this group of coronaviruses. Clustering of the inferred recombination events is non-random with evidence that Spike, the main target for humoral immunity, is beside a recombination hotspot likely driving antigenic shift in the ancestry of bat Sarbecoviruses. Coupled with the geographic ranges of their hosts and the sampling locations, across southern China, and into Southeast Asia, we confirm horseshoe bats, Rhinolophus, are the likely SARS-CoV-2 progenitor reservoir species. By tracing the recombinant sequence patterns, we conclude that there has been relatively recent geographic movement and co-circulation of these viruses' ancestors, extending across their bat host ranges in China and Southeast Asia over the last 100 years or so. We confirm that a direct proximal ancestor to SARS-CoV-2 is yet to be sampled, since the closest relative shared a common ancestor with SARS-CoV-2 approximately 40 years ago. Our analysis highlights the need for more wildlife sampling to (i) pinpoint the exact origins of SARS-CoV-2's animal progenitor, and (ii) survey the extent of the diversity in the related Sarbecoviruses' phylogeny that present high risk for future spillover.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3