Testing the efficacy of hyperspectral (AVIRIS-NG), multispectral (Sentinel-2) and radar (Sentinel-1) remote sensing images to detect native and invasive non-native trees

Author:

Arasumani MORCID,Singh Aditya,Bunyan Milind,Robin V.V.ORCID

Abstract

AbstractInvasive alien species (IAS) threaten tropical grasslands and native biodiversity and impact ecosystem service delivery, ecosystem function, and associated human livelihoods. Tropical grasslands have been dramatically and disproportionately lost to invasion by trees. The invasion continues to move rapidly into the remaining fragmented grasslands impacting various native grassland-dependent species and water streamflow in tropical montane habitats. The Shola Sky Islands of the Western Ghats host a mosaic of native grasslands and forests; of which the grasslands have been lost to exotic tree invasion (Acacias, Eucalyptus and Pines) since the 1950s. The invasion intensities, however, differ between these species wherein Acacia mearnsii and Pinus patula are highly invasive in contrast to Eucalyptus globulus. These disparities necessitate distinguishing these species for effective grassland restoration. Further, these invasive alien trees are highly intermixed with native species, thus requiring high discrimination abilities to native species apart from the non-native species.Here we assess the accuracy of various satellite and airborne remote sensing sensors and machine learning classification algorithms to identify the spatial extent of native habitats and invasive trees. Specifically, we test Sentinel-1 SAR and Sentinel-2 multispectral data and assess high spatial and spectral resolution AVIRIS-NG imagery identifying invasive species across this landscape. Sensor combinations thus include hyperspectral, multispectral and radar data and present tradeoffs in associated costs and ease of procurement. Classification methods tested include Support Vector Machine (SVM), Classification and Regression Trees (CART) and Random Forest (RF) algorithms implemented on the Google Earth Engine platform. Results indicate that AVIRIS-NG data in combination with SVM recover the highest classification skill (Overall −98%, Kappa-0.98); while CART and RF yielded < 90% accuracy. Fused Sentinel-1 and Sentinel-2 produce 91% accuracy, while Sentinel-2 alone yielded 91% accuracy with RF and SVM classification; but only with higher coverage of ground control points. AVIRIS-NG imagery was able to accurately (97%) demarcate the Acacia invasion front while Sentinel-1 and Sentinel-2 data failed. Our results suggest that Sentinel-2 images could be useful for detecting the native and non-native forests with more ground truth points, but hyperspectral data (AVIRIS-NG) permits distinguishing, native and non-native tree species and recent invasions with high precision using limited ground truth points. We suspect that large areas will have to be mapped and assessed in the coming years by conservation managers, NGOs to plan restoration, or to assess the success of restoration activities, and several data procurement and analysis steps may have to be simplified.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3