PepNN: a deep attention model for the identification of peptide binding sites

Author:

Abdin Osama,Wen Han,Kim Philip M.ORCID

Abstract

AbstractProtein-peptide interactions play a fundamental role in facilitating many cellular processes, but remain underexplored experimentally and difficult to model computationally. Here, we introduce PepNN-Struct and PepNN-Seq, structure and sequence-based approaches for the prediction of peptide binding sites on a protein given the sequence of a peptide ligand. The models make use of a novel reciprocal attention module that is able to better reflect biochemical realities of peptides undergoing conformational changes upon binding. To compensate for the scarcity of peptide-protein complex structural information, we make use of available protein-protein complex and protein sequence information through a series of transfer learning steps. PepNN-Struct achieves state-of-the-art performance on the task of identifying peptide binding sites, with a ROC AUC of 0.893 and an MCC of 0.483 on an independent test set. Beyond prediction of binding sites on proteins with a known peptide ligand, we also show that the developed models make reasonable agnostic predictions, allowing for the identification of novel peptide binding proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3