A Developmental Role for Microglial Presenilin 1 in Memory

Author:

Ledo Jose Henrique,Azevedo Estefania P.,Medrihan Lucian,Cheng Jia,Silva Hernandez M.,McCabe Kathryn,Bamkole Michael,Lafaille Juan J.,Friedman Jeffrey M.,Stevens BethORCID,Greengard Paul

Abstract

SummaryMicroglia, the macrophages of the brain, are increasingly recognized to play a key role in synaptic plasticity and function; however, the underlying mechanisms remain elusive. Presenilin 1 (PS1) is an essential protein involved in learning and memory, through neuronal mechanisms. Loss of Presenilin function in neurons impairs synapse plasticity and causes cognitive deficits in mice. Surprisingly, here we show memory enhancement in mice by deleting PS1 selectively in microglia. We further demonstrate increased synapse transmission and in vivo neuronal activity in mice by depleting PS1 during microglial development, but not after microglial maturation. Remarkably, conditional deletion of PS1 in microglia during development increased memory retention in adulthood and was dependent on the NMDA receptor subunit GluN2B. In vivo calcium imaging of freely behaving mice revealed increased amplitude of neuronal Ca2+ transients in the CA1 hippocampus of PS1 cKO mice compared to control mice, suggesting a greater CA1 engagement during novel object exploration. Finally, loss of PS1 in microglia mitigated synaptic and cognitive deficits in a mouse model of Alzheimer’s disease. Together our results reveal a novel mechanism and function of PS1 in microglia in which modulation can enhance neuronal activity, learning and memory in mice.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Complement and microglia mediate early synapse loss in Alzheimer mouse models

2. Dynamic microglial modulation of spatial learning and social behavior;Brain Behav Immun,2015

3. Microglia mediate forgetting via complement-dependent synaptic elimination

4. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor

5. Badimon A , Strasburger HJ , Ayata P , Chen X , Nair A , Ikegami A , et al. Negative feedback control of neuronal activity by microglia. Nature. 2020:1–7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3