The genome of a daddy-long-legs (Opiliones) illuminates the evolution of arachnid appendages and chelicerate genome architecture

Author:

Gainett GuilhermeORCID,González Vanessa L.ORCID,Ballesteros Jesús A.,Setton Emily V. W.,Baker Caitlin M.ORCID,Gargiulo Leonardo BaroloORCID,Santibáñez-López Carlos E.ORCID,Coddington Jonathan A.ORCID,Sharma Prashant P.ORCID

Abstract

AbstractChelicerates exhibit dynamic evolution of genome architecture, with multiple whole genome duplication events affecting groups like spiders, scorpions, and horseshoe crabs. Yet, genomes remain unavailable for several chelicerate orders, such as Opiliones (harvestmen), which has hindered comparative genomics and developmental genetics across arachnids. We assembled a draft genome of the daddy-long-legs Phalangium opilio, which revealed no signal of whole genome duplication. To test the hypothesis that single-copy Hox genes of the harvestman exhibit broader functions than subfunctionalized spider paralogs, we performed RNA interference against Deformed in P. opilio. Knockdown of Deformed incurred homeotic transformation of the two anterior pairs of walking legs into pedipalpal identity; by comparison, knockdown of the spatially restricted paralog Deformed-A in the spider affects only the first walking leg. To investigate the genetic basis for leg elongation and tarsomere patterning, we identified and interrogated the function of an Epidermal growth factor receptor (Egfr) homolog. Knockdown of Egfr incurred shortened appendages and the loss of distal leg structures. The overlapping phenotypic spectra of Egfr knockdown experiments in the harvestman and multiple insect models are striking because tarsomeres have evolved independently in these groups. Our results suggest a conserved role for Egfr in patterning distal leg structures across arthropods, as well as cooption of EGFR signaling in tarsomere patterning in both insects and arachnids. The establishment of genomic resources for P. opilio, together with functional investigations of appendage fate specification and distal patterning mechanisms, are key steps in understanding how daddy-long-legs make their long legs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3