Polymorphisms affecting expression of the vaccine antigen factor H binding protein influence invasiveness of Neisseria meningitidis

Author:

Earle Sarah G.,Lobanovska Mariya,Lavender Hayley,Tang Changyan,Exley Rachel M.,Ramos-Sevillano Elisa,Browning Douglas,Kostiou Vasiliki,Harrison Odile B.,Bratcher Holly B.,Varani Gabriele,Tang Christoph M.,Wilson Daniel J.,Maiden Martin C. J.ORCID

Abstract

ABSTRACTMany bacterial diseases are caused by organisms that ordinarily are harmless components of the human microbiome. Effective interventions against these conditions requires an understanding of the processes whereby symbiosis or commensalism breaks down. Here, we performed bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract despite being a leading cause of meningitis and sepsis. GWAS discovered single nucleotide polymorphisms (SNPs) and other bacterial genetic variants associated with invasive meningococcal disease (IMD) versus carriage in several loci across the genome, revealing the polygenic nature of this phenotype. Of note, we detected a significant peak around fHbp, which encodes factor H binding protein (fHbp); fHbp promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. We confirmed the association around fHbp with IMD in a validation GWAS, and found that SNPs identified in the validation affecting the 5’ region of fHbp mRNA alter secondary RNA structures, increase fHbp expression, and enhance bacterial escape from complement-mediated killing. This finding mirrors the known link between complement deficiencies and CFH variation with human susceptibility to IMD, highlighting the central importance of human and bacterial genetic variation across the fHbp:CFH interface in IMD susceptibility, virulence, and the transition from carriage to disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3