How certain are we? Development of an ensemble based framework for assessing astronaut cancer risks from space radiation

Author:

Simonsen Lisa C.ORCID,Slaba Tony C.

Abstract

I.AbstractA new approach to NASA space radiation risk modeling has successfully extended the current NASA probabilistic cancer risk model to an ensemble framework able to consider sub-model parameter uncertainty as well as model-form uncertainty associated with differing theoretical or empirical formalisms. Ensemble methodologies are already widely used in weather prediction, modeling of infectious disease outbreaks, and certain terrestrial radiation protection applications to better understand how uncertainty may influence risk decision-making. Applying ensemble methodologies to space radiation risk projections offers the potential to efficiently incorporate emerging research results, allow for the incorporation of future models, improve uncertainty quantification for underlying sub-models, and reduce the impact of subjective bias on risk projections. Moreover, risk forecasting across an ensemble of multiple predictive models can provide stakeholders additional information on risk acceptance if current health/medical standards cannot be met for future space exploration missions, such as human missions to Mars. In this work, ensemble risk projections implementing multiple sub-models of radiation quality, dose and dose-rate effectiveness factors, excess risk, and latency as ensemble members are presented. Initial consensus methods for ensemble model weights and correlations to account for individual model bias are discussed. In these analyses, the ensemble forecast compares well to results from NASA’s current operational cancer risk projection model used to assess permissible mission durations for astronauts. However, a large range of projected risk values are obtained at the upper 95th confidence level where models must extrapolate beyond available biological data sets. Closer agreement is seen at the median + one sigma due to the inherent similarities in available models. Identification of potential new models, epidemiological data, and methods for statistical correlation between predictive ensemble members are discussed. Alternate ways of communicating risk and acceptable uncertainty with respect to NASA’s current permissible exposure limits are explored.

Publisher

Cold Spring Harbor Laboratory

Reference116 articles.

1. NUCFRG3: Light ion improvements to the nuclear fragmentation model;Nucl. Instr. Meth. Phys. Res. A,2012

2. PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra

3. Time dependence of the proton flux measured by PAMELA during the 2006 July – 2009 December solar minimum;Astrophys. J.,2013

4. Ten years of PAMELA in space;Rivista del Nuovo Cimento,2017

5. Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station;Phys. Rev. Lett.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3