Author:
Tangherloni Andrea,Nobile Marco S.,Cazzaniga Paolo,Capitoli Giulia,Spolaor Simone,Rundo Leonardo,Mauri Giancarlo,Besozzi Daniela
Abstract
AbstractMathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel “black-box” deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand–Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes.Author summarySystems Biology is an interdisciplinary research area focusing on the integration of biological data with mathematical and computational methods in order to unravel and predict the emergent behavior of complex biological systems. The ultimate goal is the understanding of the complex mechanisms at the basis of biological processes, together with the formulation of novel hypotheses that can be then tested by means of laboratory experiments. In such a context, mechanistic models can be used to describe and investigate biochemical reaction networks by taking into account all the details related to their stoichiometry and kinetics. Unfortunately, these models can be characterized by hundreds or thousands of molecular species and biochemical reactions, making their simulation unfeasible with classic simulators running on Central Processing Units (CPUs). In addition, a large number of simulations might be required to calibrate the models and/or to test the effect of perturbations. In order to overcome the limitations imposed by CPUs, Graphics Processing Units (GPUs) can be effectively used to accelerate the simulations of these models. We thus designed and developed a novel GPU-based tool, called FiCoS, to speed-up the computational analyses typically required in Systems Biology.
Publisher
Cold Spring Harbor Laboratory
Reference74 articles.
1. Szallasi Z , Stelling J , Periwal V. System Modeling in Cellular Biology: From Concepts to Nuts and Bolts. The MIT Press; 2006.
2. Besozzi D. Reaction-Based Models of Biochemical Networks. In: Beckmann A , Bienvenu L , Jonoska N , editors. Proc. of Pursuit of the Universal, 12th Conference on Computability in Europe. vol. 9709 of LNCS. Switzerland: Springer International Publishing; 2016. p. 24–34.
3. Cazzaniga P , Nobile MS , Besozzi D. The impact of particles initialization in PSO: parameter estimation as a case in point. In: Proc. of Computational Intelligence in Bioinformatics and Computational Biology. IEEE; 2015. p. 1–8.
4. Munsky B , Hlavacek WS , Tsimring LS. Quantitative biology: theory, computational methods, and models. MIT Press; 2018.
5. Physicochemical modelling of cell signalling pathways
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献