Origination of the circadian clock system in stem cells regulates cell differentiation

Author:

Torii Kotaro,Inoue Keisuke,Bekki Keita,Haraguchi Kazuya,Kubo Minoru,Kondo Yuki,Suzuki Takamasa,Shimizu Hanako,Uemoto Kyohei,Saito Masato,Fukuda Hiroo,Araki Takashi,Endo Motomu

Abstract

The circadian clock regulates various physiological responses. To achieve this, both animals and plants have distinct circadian clocks in each tissue that are optimized for that tissue’s respective functions. However, if and how the tissue-specific circadian clocks are involved in specification of cell types remains unclear. Here, by implementing a single-cell transcriptome with a new analytics pipeline, we have reconstructed an actual time-series of the cell differentiation process at single-cell resolution, and discovered that the Arabidopsis circadian clock is involved in the process of cell differentiation through transcription factor BRI1-EMS SUPPRESSOR 1 (BES1) signaling. In this pathway, direct repression of LATE ELONGATED HYPOCOTYL (LHY) expression by BES1 triggers reconstruction of the circadian clock in stem cells. The reconstructed circadian clock regulates cell differentiation through fine-tuning of key factors for epigenetic modification, cell-fate determination, and the cell cycle. Thus, the establishment of circadian systems precedes cell differentiation and specifies cell types.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Circadian control of global transcription;BioMed Res. Int.,2015

2. Molecular components of the Mammalian circadian clock;Handb. Exp. Pharmacol.,2013

3. Tissue-specific clocks in Arabidopsis show asymmetric coupling

4. Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro

5. T H 17 Cell Differentiation Is Regulated by the Circadian Clock

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3