Microglia limit lesion expansion and promote functional recovery after spinal cord injury in mice

Author:

Brennan Faith H.ORCID,Hall Jodie C.E.ORCID,Guan Zhen,Popovich Phillip G.ORCID

Abstract

AbstractTraumatic spinal cord injury (SCI) elicits a robust intraspinal inflammatory reaction that is dominated by at least two major subpopulations of macrophages, i.e., those derived from resident microglia and another from monocytes that infiltrate the injury site from the circulation. Previously, we implicated monocyte-derived macrophages (MDMs) as effectors of acute post-injury pathology after SCI; however, it is still unclear whether microglia also contribute to lesion pathology. Assigning distinct functional roles to microglia and MDMs in vivo has been difficult because these CNS macrophage subsets are morphologically and phenotypically similar. Here, to characterize the role that microglia play in experimental models of thoracic spinal contusion or lumbar crush injury, mice were fed vehicle chow or chow laced with a CSF1R receptor antagonist, PLX5622. Feeding PLX5622 depletes microglia. In both groups, spontaneous recovery of hindlimb motor function was evaluated for up to 8 weeks post-SCI using open-field and horizontal ladder tests. Histopathological assessment of intraspinal pathology was assessed in 8 week post-injury tissues. In both SCI models, microglia depletion exacerbated lesion pathology and impaired spontaneous recovery of hind limb function. Notably, the loss of microglia prevented astroglial encapsulation of the lesion core, which was associated with larger lesions, enhanced demyelination and neuron loss and a larger inflammatory response that was dominated by monocyte-derived macrophages. The neuroprotective and healing properties of microglia become obvious in the subacute phases of recovery; microglia depletion up to 7 days post-injury (dpi) had no apparent effect on recovery while delayed depletion from 8-28dpi exacerbated lesion pathology and significantly impaired functional recovery. These data suggest that microglia have essential tissue repair functions after SCI. Selective enhancement of microglial activities may be a novel strategy to preserve tissue and promote recovery of function after neurotrauma.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3