Dominant Remodeling of Cattle Rumen Microbiome by Schedonorus arundinaceus (Tall Fescue) KY-31 Carrying a Fungal Endophyte

Author:

Khairunisa Bela Haifa,Susanti Dwi,Loganathan Usha,Teutsch Christopher D.,Campbell Brian T.,Fiske David,Wilkinson Carol A.,Aylward Frank O.,Mukhopadhyay BiswarupORCID

Abstract

AbstractTall fescue KY-31 feeds ~20% of the beef cattle in the United States. It carries a fungal endophyte that produces ergovaline, which causes toxicosis in cattle, leading to $2 billion revenue loss annually. The MaxQ cultivar of the grass is non-toxic, but less attractive economically. To develop ways of mitigating the toxicity, the rumen microbiome of cattle consuming KY-31 and MaxQ have been analyzed, principally for identifying ergovaline transforming microorganisms and often using fecal microbiome as a surrogate. We have hypothesized that KY-31 not only causes toxicosis, but also impacts rumen metabolism broadly, and tested the hypothesis by analyzing rumen microbiome compositions of cattle that grazed MaxQ with an intervening KY-31 grazing period with 16S rRNA-V4 element as identifier. We found that KY-31 remodeled the cellulolytic and saccharolytic communities substantially. This effect was not evident at whole microbiome levels but in the compositions of sessile and planktonic fractions. A move from MaxQ to KY-31 lowered the Firmicutes abundance in the sessile fraction and increased it in planktonic part and caused an opposite effect for Bacteroidetes, although the total abundances of these dominant rumen organisms remained unchanged. In the sessile fraction, the abundances of Fibrobacter, which degrades less degradable fibers, and certain cellulolytic Firmicutes such as Pseudobutyrivibrio and Butyrivibrio 2, dropped, and these losses were apparently compensated by increased occurrences of Eubacterium and specific Ruminococcaceae and Lachnospiraceae. In planktonic fraction the Tenericutes’ abundance increased as saccharolytic Bacteroidetes’ level dropped. Several potential ergovaline degraders were enriched. A return to MaxQ restored the original Firmicutes and Bacteroidetes distributions. However, the Fibrobacter and Butyrivibrio 2 abundances remained low and their substitutes maintained significant presence. The rumen microbiome was influenced minimally by animals’ fescue toxicosis and was distinct from previously reported fecal microbiomes in composition. In summary, KY-31 and MaxQ cultivars of tall fescue were digested in the cattle rumen with distinct consortia and the KY-31-specific features were dominant. The study highlighted the importance of analyzing sessile and planktonic fractions separately.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3