Abstract
AbstractUnderstanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signalling is currently unknown. Here we show in mice with single-cell RT-PCR that sub-populations of dorsal root ganglion (DRG) neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of co-expression with Trpv1 (81-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22 and neuropeptide FF) activated sub-populations of bladder-innervating DRG neurons, showing functional evidence of co-expression between MrgprA3, MrgprC11 and TRPV1. In ex vivo bladder-nerve preparations chloroquine, BAM8-22 and neuropeptide FF all evoked mechanical hypersensitivity in sub-populations (20-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterΔ−/− mice. In vitro whole-cell patch clamp recordings showed that application of an MrgprA3/C11 agonist cocktail induced neuronal hyper-excitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist cocktail into the bladder of wild-type mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK-immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of wild-type, but not Mrgpr-clusterΔ−/− mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors is not required for normal bladder function but does trigger hypersensitivity to distension, a critically valuable factor for therapeutic target development.Significance statementDetermining how bladder afferents become sensitized is the first step in finding effective treatments for common urological disorders such as overactive bladder and interstitial cystitis/bladder pain syndrome. Here we show that two of the key receptors, MrgprA3 and MrgprC11, that mediate itch from the skin are also expressed on afferents innervating the bladder. Activation of these receptors results in sensitization of bladder afferents, resulting in sensory signals being sent into the spinal cord that prematurely indicate bladder fullness. Targeting bladder afferents expressing MrgprA3 or MrgprC11 and preventing their sensitisation may provide a novel approach for treating overactive bladder and interstitial cystitis/bladder pain syndrome.
Publisher
Cold Spring Harbor Laboratory