Heartbeats entrain breathing via baroreceptor-mediated modulation of expiratory activity

Author:

Barnett William H.,Baekey David M.,Paton Julian F. R.,Dick Thomas E.,Wehrwein Erica A.,Molkov Yaroslav I.ORCID

Abstract

AbstractCardio-ventilatory coupling refers to a heartbeat (HB) occurring at a preferred latency before the onset of the next breath. We hypothesized that the pressure pulse generated by a HB activates baroreceptors that modulates brainstem expiratory neuronal activity and delays the initiation of inspiration. In supine male subjects, we recorded ventilation, electrocardiogram, and blood pressure during 20-min epochs of baseline, slow-deep breathing, and recovery. In in situ rodent preparations, we recorded brainstem activity in response to pulses of perfusion pressure. We applied a well-established respiratory network model to interpret these data. In humans, the latency between HBs and onset of inspiration was consistent across different breathing patterns. In in situ preparations, a transient pressure pulse during expiration activated a subpopulation of expiratory neurons normally active during post-inspiration; thus, delaying the next inspiration. In the model, baroreceptor input to post-inspiratory neurons accounted for the effect. These studies are consistent with baroreflex activation modulating respiration through a pauci-synaptic circuit from baroreceptors to onset of inspiration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3