MAPPER: A new image analysis pipeline unmasks differential regulation of Drosophila wing features

Author:

Kumar Nilay,Huizar Francisco,Robinett Trent,Farfán-Pira Keity J.,Soundarrajan Dharsan,Unger Maria,Brodskiy Pavel,Nahmad Marcos,Zartman Jeremiah J.ORCID

Abstract

SummaryPhenomics requires quantification of large volumes of image data, necessitating high throughput image processing approaches. Existing image processing pipelines for Drosophila wings, a powerful model for studying morphogenesis, are limited in speed, versatility, and precision. To overcome these limitations, we developed MAPPER, a fully-automated machine learning-based pipeline that quantifies high dimensional phenotypic signatures, with each dimension representing a unique morphological feature. MAPPER magnifies the power of Drosophila genetics by rapidly identifying subtle phenotypic differences in sample populations. To demonstrate its widespread utility, we used MAPPER to reveal new insights connecting patterning and growth across Drosophila genotypes and species. The morphological features extracted using MAPPER identified the presence of a uniform scaling of proximal-distal axis length across four different species of Drosophila. Observation of morphological features extracted by MAPPER from Drosophila wings by modulating insulin signaling pathway activity revealed the presence of a scaling gradient across the anterior-posterior axis. Additionally, batch processing of samples with MAPPER revealed a key function for the mechanosensitive calcium channel, Piezo, in regulating bilateral symmetry and robust organ growth. MAPPER is an open source tool for rapid analysis of large volumes of imaging data. Overall, MAPPER provides new capabilities to rigorously and systematically identify genotype-to-phenotype relationships in an automated, high throughput fashion.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3