Fly stage trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in near physiological conditions

Author:

Villafraz OrianaORCID,Biran Marc,Pineda ErikaORCID,Plazolles NicolasORCID,Cahoreau Edern,Souza Rodolpho Ornitz OliveiraORCID,Thonnus Magali,Allmann Stefan,Tetaud EmmanuelORCID,Rivière Loïc,Silber Ariel M.ORCID,Barrett Michael P.ORCID,Zíková AlenaORCID,Boshart MichaelORCID,Portais Jean-CharlesORCID,Bringaud FrédéricORCID

Abstract

AbstractTrypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly, where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of a dozen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6, showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficientper sefor the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.Author SummaryIn the midgut of its insect vector, trypanosomes rely on proline to feed their energy metabolism. However, the availability of other potential carbon sources that can be used by the parasite is currently unknown. Here we show that tricarboxylic acid (TCA) cycle intermediates,i.e.succinate, malate and α-ketoglutarate, stimulate growth of procyclic trypanosomes incubated in medium containing 2 mM proline, which is in the range of the amounts measured in the midgut of the fly. Some of these additional carbon sources are needed for the development of epimastigotes, which differentiate from procyclics in the midgut of the fly, since their growth defect observed in the presence of 2 mM proline is rescued by addition of α-ketoglutarate. In addition, we have implemented new approaches to study a poorly explored branch of the TCA cycle converting malate to α-ketoglutarate, which was previously described as non-functional in the parasite, regardless of the glucose levels available. The discovery of this branch reveals that a full TCA cycle can operate in procyclic trypanosomes. Our data broaden the metabolic potential of trypanosomes and pave the way for a better understanding of the parasite’s metabolism in various organ systems of the tsetse fly, where it evolves.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3