CKS1-dependent proteostatic regulation has dual roles combating acute myeloid leukemia whilst protecting normal hematopoiesis

Author:

Grey W.ORCID,Rio-Machin A.,Casado-Izquierdo P.ORCID,Miettinen J.J.ORCID,Copley F.,Parsons A.,Heckman C.A.ORCID,Cutillas P.,Gribben J.,Fitzgibbon J.,Bonnet D.ORCID

Abstract

AbstractAcute myeloid leukemia (AML) is an aggressive hematological disorder comprising a hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with limited self-renewal ability. AML has a dismal prognosis, with extremely low two-year survival rates in the poorest cytogenetic risk patients, primarily due to the failure of intensive chemotherapy protocols unable to deplete LSCs, which reconstitute the disease in vivo, and the significant toxicity towards healthy hematopoietic cells. Whilst much work has been done to identify genetic and epigenetic vulnerabilities in AML LSCs, little is known about protein dynamics and the role of protein degradation in drug resistance and relapse. Here, using a highly specific inhibitor of the SCFSKP2-CKS1 complex, we report a dual role for CKS1-dependent protein degradation in reducing AML blasts in vivo, and importantly depleting LSCs. Whilst many AML LSC targeted therapies show significant toxicity to healthy hematopoiesis, inhibition of CKS1-dependent protein degradation has the opposite effect, protecting normal hematopoietic cells from chemotherapeutic toxicity. Together these findings demonstrate CKS1-dependent proteostasis is key for normal and malignant hematopoiesis.SignificanceCKS1-dependent protein degradation is a specific vulnerability in AML LSCs. Specific inhibition of SCFSKP2-CKS1 is lethal to CKS1Bhigh AML blasts and all AML LSCs. Normal hematopoiesis is protected from chemotherapeutic toxicity by inhibition of CKS1-dependent protein degradation, substantiating a dual role for CKS1-dependent protein degradation in clinical treatment of AML.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3