Historical and cross-disciplinary trends in the biological and social sciences reveal an accelerating adoption of advanced analytics

Author:

Bolt Taylor,Nomi Jason S.,Bzdok Danilo,Uddin Lucina Q.

Abstract

AbstractMethods for data analysis in the biomedical, life and social sciences are developing at a rapid pace. At the same time, there is increasing concern that education in quantitative methods is failing to adequately prepare students for contemporary research. These trends have led to calls for educational reform to undergraduate and graduate quantitative research method curricula. We argue that such reform should be based on data-driven insights into within- and cross-disciplinary use of research methods. Our survey of peer-reviewed literature screened ∼3.5 million openly available research articles to monitor the cross-disciplinary usage of research methods in the past decade. We applied data-driven text-mining analyses to the methods and materials section of a large subset of this corpus to identify method trends shared across disciplines, as well as those unique to each discipline. As a whole, usage of T-test, analysis of variance, and other classical regression-based methods has declined in the published literature over the past 10 years. Machine-learning approaches, such as artificial neural networks, have seen a significant increase in the total share of scientific publications. We find unique groupings of research methods associated with each biomedical, life and social science discipline, such as the use of structural equation modeling in psychology, survival models in oncology, and manifold learning in ecology. We discuss the implications of these findings for education in statistics and research methods, as well as within- and cross-disciplinary collaboration.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. From Statistics to Statistical Science;Journal of the Royal Statistical Society. Series D (The Statistician),1999

2. Mere Renovation is Too Little Too Late: We Need to Rethink our Undergraduate Curriculum from the Ground Up;The American Statistician,2015

3. Implications of the Data Revolution for Statistics Education;International Statistical Review,2016

4. Teaching Stats for Data Science;The American Statistician,2018

5. Open Access Subset (May 20, 2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3