A recombinant SARS-CoV-2 RBD antigen expressed in insect cells elicits immunogenicity and confirms safety in animal models

Author:

Choque-Guevara Ricardo,Poma-Acevedo Astrid,Montesinos-Millán Ricardo,Rios-Matos Dora,Gutiérrez-Manchay Kristel,Montalvan Angela,Quiñones-Garcia Stefany,de Grecia Cauti-Mendoza Maria,Agurto-Arteaga Andres,Ramirez-Ortiz Ingrid,Criollo-Orozco Manuel,Huaccachi-Gonzales Edison,Lázaro Yomara K. Romero,Perez-Martinez Norma,Isasi-Rivas Gisela,Sernaque-Aguilar Yacory,Villanueva-Pérez DorisORCID,Vallejos-Sánchez Katherine,Fernández-Sánchez Manolo,Guevara Luis,Fernández-Díaz Manolo,Zimic Mirko,

Abstract

AbstractCOVID-19 pandemic has accelerated the development of vaccines against its etiologic agent, SARS-CoV-2. However, the emergence of new variants of the virus requires new immunization strategies in addition to the current vaccines approved for human administration. In the present report, the immunological and safety evaluation in mice and hamsters of a subunit vaccine based on the RBD sub-domain with two adjuvants of oil origin is described.The RBD protein was expressed in insect cells and purified by chromatography until >95% purity. The protein was shown to have the appropriate folding as determined by ELISA and flow cytometry binding assays to its receptor, as well as by its detection by hamster immune anti-S1 sera under non-reducing conditions.In immunization assays in mice and hamsters, the purified RBD formulated with adjuvants based on oil-water emulsifications and squalene was able to stimulate specific neutralizing antibodies and confirm the secretion of IFN-γ after stimulating spleen cells with the purified RBD. The vaccine candidate was shown to be safe, as demonstrated by the histopathological analysis in lungs, liver and kidney. These results demonstrate the potential of the purified RBD administered with adjuvants through an intramuscular route, to be evaluated in a challenge against SARS-CoV-2 and determine its ability to confer protection against infection.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3