Flying In-formation: A computational method for the classification of host seeking mosquito flight patterns using path segmentation and unsupervised machine learning

Author:

Fowler Mark TORCID,Abbott Anthony JORCID,Murray Gregory PD,McCall Philip JORCID

Abstract

AbstractThe rational design of effective vector control tools requires detailed knowledge of vector behaviour. Yet, behavioural observations, interpretations, evaluations and definitions by even the most experienced researcher are constrained by subjectivity and perceptual limits. Seeking an objective alternative to ‘expertise’, we developed and tested an unsupervised method for the automatic identification of video-tracked mosquito flight behaviour. This method unites path-segmentation and unsupervised machine learning in an innovative workflow and is implemented using a combination of R and python. The workflow (1) records movement trajectories; (2) applies path-segmentation; (3) clusters path segments using unsupervised learning; and (4) interprets results. Analysis of the flight patterns of An. gambiae s.s., responding to human-baited insecticide-treated bednets (ITNs), by the new method identified four distinct behaviour modes: with ‘swooping’ and ‘approaching’ modes predominant at ITNs; increased ‘walking’ behaviours at untreated nets; similar rates of ‘reacting’ at both nets; and higher overall activity at treated nets. The method’s validity was tested by comparing these findings with those from a similar setting using an expertise-based method. The level of correspondence found between the studies validated the accuracy of the new method. While researcher-defined behaviours are inherently subjective, and prone to corollary shortcomings, the new approach’s mathematical method is objective, automatic, repeatable and a validated alternative for analysing complex vector behaviour. This method provides a novel and adaptable analytical tool and is freely available to vector biologists, ethologists and behavioural ecologists.Author summaryVector control targets the insects and arachnids that transmit 1 in every 6 communicable diseases worldwide. Since the effectiveness of many vector control tools depends on exploiting or changing vector behaviour, a firm understanding of this behaviour is required to maximise the impact of existing tools and design new interventions. However, current methods for identifying such behaviours are based primarily on expert knowledge, which can be inefficient, difficult to scale and limited by perceptual abilities. To overcome this, we present, detail and validate a new method for categorising vector behaviour. This method combines existing path segmentation and unsupervised machine learning algorithms to identify changes in vector movement trajectories and classify behaviours. The accuracy of the new method is demonstrated by replicating existing, expert-derived, findings covering the behaviour of host-seeking mosquitos around insecticide treated bednets, compared to nets without insecticide. As the method found the same changes in mosquito activity as previous research, it is said to be validated. The new method is significant, as it improves the analytical capabilities of biologists working to reduce the burden of vector-borne diseases, such as malaria, through an understanding of behaviour.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3