Hunchback activates Bicoid in post-mitotic Pair1 neurons to regulate synapse number

Author:

Lee Kristen MORCID,Linskens Amanda MORCID,Doe Chris Q

Abstract

AbstractThe proper formation and function of neural circuits is crucial for cognition, sensation, and behavior. Neural circuits are highly-specific, and this specificity is dependent on neurons developing key features of their individual identities: morphology, anatomical location, molecular expression and biophysiological properties. Previous research has demonstrated that a neurons identity is, in part, generated by the temporal transcription window the neuron is born in, and the homeodomain transcription factors expressed in the mature neuron. However, whether temporal transcription factors and homeodomain transcription factors regulate neural circuit formation, maintenance and function remains unknown. Here, we utilize a well-characterized neural circuit in the Drosophila larvae, the Pair1 neuron. We determined that in the Pair1 neuron, the temporal transcription factor Hunchback activates the homeodomain transcription factor Bicoid (Bcd). Both Hunchback and Bcd are expressed in Pair1 throughout larval development. Interestingly, Hunchback and Bcd were not required in Pair1 for neurotransmitter identity or axonal morphology, but were required for synapse density. We found that these transcription factors were functioning post-mitotically in Pair1 to regulate synapse density. Additionally, knocking down Hunchback and Bcd in Pair1 neurons disrupted the behavioral output of the circuit. We utilized the genetic tool TransTango to determine that Hunchback function in Pair1 is to repress forming synapses with erroneous neurons. To our knowledge, these data are the first to show Hunchback activating Bcd expression, as well as the first to demonstrate a role for Hunchback and Bcd post-mitotically.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3