Deep-BGCpred: A unified deep learning genome-mining framework for biosynthetic gene cluster prediction

Author:

Yang Ziyi,Liao Benben,Hsieh Changyu,Han Chao,Fang Liang,Zhang Shengyu

Abstract

Natural products produced by microorganisms constitute an important source of essential pharmaceuticals, including antimicrobial and anti-tumor drugs. These bioactive molecules are microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene Clusters (BGCs). The rapid increase of microbial genomics resources, due to the availability of high-throughput sequencing technologies, has spurred the development of computational methods for microbial genome mining for BGC discovery. Current machine learning methods, however, have limited successes in uncovering novel BGCs due to an excessive number of false positives in their predictions. To this end, we propose Deep-BGCpred, a framework that effectively addresses the aforementioned issue by improving a deep learning model termed DeepBGC. The new model embeds multi-source protein family domains and employs a stacked Bidirectional Long Short-Term Memory model to boost accuracy for BGC identifications. In particular, it integrates two customized strategies, sliding window strategy and dual-model serial screening, to improve the model’s performance stability and reduce the number of false positive in BGC predictions. We compare the proposed model against other well-established methods on common benchmarks and achieve new state-of-the-art results with convincing evidences. We expect that researchers working on genome mining for natural products may be greatly benefited from our newly proposed method, Deep-BGCpred.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3