Abstract
SUMMARYThe synthesis of mitochondrial DNA (mtDNA) is not coupled with cell cycle. Previous studies have shown that the size of deoxyribonucleoside triphosphate (dNTP) pools plays an important role in regulating mtDNA replication and amplification. In yeast, dNTPs are synthesized by the cytosolic ribonucleotide reductase (RNR). It is currently poorly understood as to how RNR activity is regulated in non-dividing or quiescent cells to finely tune mtDNA metabolism to cope with different metabolic states. Here, we show that defect in the 20S proteasome drastically destabilizes mtDNA. The mtDNA instability phenotype in 20S proteasome mutants is suppressed by overexpression of RNR3 or by the deletion of SML1, encoding a minor catalytic subunit and an intrinsic inhibitor of RNR respectively. We found that Sml1 is stabilized in the 20S proteasomal mutants, suggesting that 20S affects mtDNA stability by stabilizing Sml1. Interestingly, defect in the regulatory 19S proteasomal function has only subtle effect on mtDNA stability, supporting a role of the 20S proteasome in dNTP homeostasis independent of 19S. Finally, we found that when cells are transitioned from glycolytic to oxidative growth, Sml1 level is reduced in a 20S-dependent manner. In summary, our study establishes a link between cellular proteostasis and mtDNA metabolism through the regulation of dNTP homeostasis. We propose that increased degradation of Sml1 by the 20S proteasome under respiratory conditions provides a mechanism to stimulate dNTP synthesis and promote mtDNA amplification.
Publisher
Cold Spring Harbor Laboratory