Optimality of extracellular enzyme production and activity in dynamic flux balance modeling

Author:

Quintin MichaelORCID,Dukovski IlijaORCID,Bhatnagar JenniferORCID,Segrè DanielORCID

Abstract

AbstractIn microbial communities, many vital metabolic functions, including the degradation of cellulose, proteins and other complex macromolecules, are carried out by costly, extracellularly secreted enzymes. While significant effort has been dedicated to analyzing genome-scale metabolic networks for individual microbes and communities, little is known about the interplay between global allocation of metabolic resources in the cell and extracellular enzyme secretion and activity. Here we introduce a method for modeling the secretion and catalytic functions of extracellular enzymes using dynamic flux balance analysis. This new addition, implemented within COMETS (Computation Of Microbial Ecosystems in Time and Space), simulates the costly production and secretion of enzymes and their diffusion and activity throughout the environment, independent of the producing organism. After tuning our model based on data for a Saccharomyces cerevisiae strain engineered to produce exogenous cellulases, we explored the dynamics of the system at different cellulose concentrations and enzyme production rates. We found that there are distinct rates of constitutive enzyme secretion which maximize either growth rate or biomass yield. These optimal rates are strongly dependent on enzyme kinetic properties and environmental conditions, including the amount of cellulose substrate available. Our framework will facilitate the development of more realistic simulations of microbial community dynamics within environments rich in complex macromolecules, with applications in the study of soil and plant-associated ecosystems, and other natural and engineered microbiomes.ImportanceMany organisms - including soil, marine and human-associated bacteria and fungi - perform part of their metabolic functions outside of the boundary of the cell, through the secretion of extracellular enzymes that can diffuse and facilitate reactions independently of the organism that produced them. In order to better understand and predict microbial ecosystems, it would be helpful to create mathematical models incorporating these extracellular reactions within simulations of metabolism at the whole-cell level. In this paper we demonstrate the implementation of such a methodology and apply it to study a cellulase-secreting yeast. This work will be useful for a number of microbial ecology applications, including modeling of microbiome dynamics, engineering of bioproducts (e.g. biofuels) from plant biomass through synthetic communities or modified organisms, and testing of basic ecological hypotheses about the balance between cost and benefits of the production of common goods in microbial communities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3