Whole transcriptome-sequencing and network analysis of CD1c+ human dendritic cells identifies cytokine-secreting subsets linked to type I IFN-negative autoimmunity to the eye

Author:

Hiddingh S.,Pandit A.ORCID,Verhagen F.H.,Rijken R.,Servaas N. H.,Wichers C.G.K.,ten Dam-van Loon N.H.,Imhof S.M.,Radstake T.R.D.J.,de Boer J.H.,Kuiper J.J.W.ORCID

Abstract

ABSTRACTBackgroundInflammatory subsets of CD1c+ conventional dendritic cells (CD1c+ DCs) are promoted by type I interferons (IFN), but the molecular basis for CD1c+ DCs involvement in conditions not driven by type I IFNs is unknown.MethodsOur objective was to use RNA-sequencing of blood CD1c+ DCs and high-dimensional flow cytometry of two cohorts of autoimmune uveitis patients and healthy donors to characterize the CD1c+ DCs population of type I IFN-negative autoimmune uveitis.ResultsWe report that the CD1c+ DCs pool from patients with autoimmune uveitis (n=45) is skewed towards a transcriptional network characterized by surface receptor genes CX3CR1, CCR2, and CD36. We confirmed the association of the transcriptional network with autoimmune uveitis by RNA-sequencing in another case-control cohort (n=35) and demonstrated that this network was governed by NOTCH2-RUNX3 signaling. Unbiased flow cytometry analysis based on the transcriptional network identified blood CD1c+ DC subsets that can be distinguished by CX3CR1 and CD36 surface expression. A CD36+CX3CR1+CD1c+ DC subset within the novel DC3 population was diminished in peripheral blood of patients, while CD1c+ DCs expressing CD36 and CX3CR1 accumulate locally in the inflamed eye. The CD36+CX3CR1+CD1c+ DC subset showed a differential capacity to produce cytokines, including TNF-alpha, IL-6, and VEGF, but not IL-23.ConclusionThese results show that CD1c+ DC subsets defined on the basis of surface expression of CD36 and CX3CR1 are linked to type I IFN-negative human autoimmune uveitis and show a differential capacity to secrete proinflammatory mediators that drive its pathophysiology.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3