Computational Compensatory Mutation Discovery Approach: Predicting a PARP1 Variant Rescue Mutation

Author:

Ravishankar KrithikaORCID,Jiang XianliORCID,Leddin Emmett M.ORCID,Morcos FaruckORCID,Cisneros G. AndrésORCID

Abstract

AbstractThe prediction of protein mutations that affect function may be exploited for multiple uses. In the context of disease variants, the prediction of compensatory mutations that reestablish functional phenotypes could aid in the development of genetic therapies. In this work, we present an integrated approach that combines coevolutionary analysis and molecular dynamics (MD) simulations to discover functional compensatory mutations. This approach is employed to investigate possible rescue mutations of a poly(ADP-ribose) polymerase 1 (PARP1) variant, PARP1 V762A, associated with lung cancer and follicular lymphoma. MD simulations show PARP1 V762A exhibits noticeable changes in structural and dynamical behavior compared with wild type PARP1. Our integrated approach predicts A755E as a possible compensatory mutation based on coevolutionary information, and molecular simulations indicate that the PARP1 A755E/V762A double mutant exhibits similar structural and dynamical behavior to WT PARP1. Our methodology can be broadly applied to a large number of systems where SNPs have been identified as connected to disease and can shed light on the biophysical effects of such changes as well as provide a way to discover potential mutants that could restore wild type-like functionality. This can in turn be further utilized in the design of molecular therapeutics that aim to mimic such compensatory effect.Significance StatementDiscovering protein mutations with desired phenotypes can be challenging due to its combinatorial nature. Herein we employ a methodology combining gene SNP association to disease, direct coupling analysis and molecular dynamics simulations to systematically predict rescue mutations. Our workflow identifies A755E as a potential rescue for the PARP1 V762A mutation, which has been associated with cancer. This methodology is general and can be applied broadly.

Publisher

Cold Spring Harbor Laboratory

Reference92 articles.

1. Therapeutic applications of trans-splicing;British Medical Bulletin,2020

2. Hypothesis driven single nucleotide polymorphism search (HyDn-SNP-S);DNA Repair,2013

3. DNArCdb: A database of cancer biomarkers in DNA repair genes that includes variants related to multiple cancer phenotypes

4. ALKBH7 Variant Related to Prostate Cancer Exhibits Altered Substrate Binding;PLOS Computational Biology,2017

5. Characterization of Nine Cancer-Associated Variants in Human DNA Polymerase »;Chemical Research in Toxicology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3