FDJD: RNA-Seq Based Fusion Transcript Detection Using Jaccard Distance

Author:

Mohebbi Hamidreza,Haspel NuritORCID

Abstract

AbstractGene fusions events, which are the result of two genes fused together to create a hybrid gene, were first described in cancer cells in the early 1980s. These events are relatively common in many cancers including prostate, lymphoid, soft tissue, and breast. Recent advances in next-generation sequencing (NGS) provide a high volume of genomic data, including cancer genomes. The detection of possible gene fusions requires fast and accurate methods. However, current methods suffer from inefficiency, lack of sufficient accuracy, and a high false-positive rate. We present an RNA-Seq fusion detection method that uses dimensionality reduction and parallel computing to speed up the computation. We convert the RNA categorical space into a compact binary array called binary fingerprints, which enables us to reduce the memory usage and increase efficiency. The search and detection of fusion candidates are done using the Jaccard distance. The detection of candidates is followed by refinement. We benchmarked our fusion prediction accuracy using both simulated and genuine RNA-Seq datasets. Paired-end Illumina RNA-Seq genuine data were obtained from 60 publicly available cancer cell line data sets. The results are compared against the state-of-the-art-methods such as STAR-Fusion, InFusion, and TopHat-Fusion. Our results show that FDJD exhibits superior accuracy compared to popular alternative fusion detection methods. We achieved 90% accuracy on simulated fusion transcript inputs, which is the highest among the compared methods while maintaining comparable run time.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3