Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression

Author:

Cook Georgia M.ORCID,Brown KatherineORCID,Shang Pengcheng,Li YanhuaORCID,Soday LiorORCID,Dinan Adam M.ORCID,Tumescheit CharlotteORCID,Adrian Mockett A. P.,Fang YingORCID,Firth Andrew E.ORCID,Brierley IanORCID

Abstract

AbstractPorcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus which causes significant economic losses to the swine industry worldwide. Here, we use ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and analyse the host response to infection. We quantified viral gene expression over a timecourse of infection, and calculated the efficiency of programmed ribosomal frameshifting (PRF) at both sites on the viral genome. At the nsp2 frameshift site (a rare example of protein-stimulated frameshifting), −2 PRF efficiency increases over time, likely facilitated by accumulation of the PRF- stimulatory viral protein (nsp1β) during infection. This marks arteriviruses as the second example of temporally regulated PRF. Surprisingly, we also found PRF efficiency at the canonical ORF1ab frameshift site increases over time, in apparent contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a 125-codon ORF overlapping nsp12, which is expressed as highly as nsp12 itself at late stages of replication, and is likely translated from novel subgenomic (sg) RNA transcripts that overlap the 3′ end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV- 2, suggesting a potential conserved mechanism for temporal regulation of expression of the 3′-proximal region of ORF1b. In addition, we identified a highly translated, short upstream ORF (uORF) in the 5′ UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. This is the first application of RiboSeq to arterivirus-infected cells, and reveals new features which add to the complexity of gene expression programmes in this important family of nidoviruses.

Publisher

Cold Spring Harbor Laboratory

Reference160 articles.

1. Lelystad virus belongs to a new virus family, comprising lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus;Arch. Virol. Suppl,1994

2. Nidovirales: a new order comprising Coronaviridae and Arteriviridae;Arch. Virol,1997

3. Improved vaccine against PRRSV: Current Progress and future perspective;Frontiers in Microbiology,2017

4. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers;Journal of Swine Health and Production,2013

5. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity;Virology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3