Hypoxia drives HIF2-dependent macrophage cell cycle entry and susceptibility to lentiviral transduction

Author:

Meng Bo,Zhao Na,Mlcochova Petra,Ferreira Isabella A.T.M,Ortmann Brian M.,Davis Tanja,Wit Niek,Rehwinkel Jan,Cook Simon,Maxwell Patrick H.,Nathan James A.,Gupta Ravindra K.ORCID

Abstract

AbstractMacrophages play critical roles across health and disease. Low oxygen conditions (hypoxia) have been associated primarily with cell cycle arrest in cultured dividing cells. Macrophages are typically quiescent in G0, though yolk sac and bone marrow derived macrophages frequently proliferate and monocyte-derived tissue macrophages are able to proliferate in response to tissue signals. Here we show that hypoxia (1% oxygen tension) results in reversible entry into the cell cycle in monocyte derived macrophages (MDM) and mouse peritoneal macrophages. Cell cycle progression is largely limited to G1/S phase with very little progression to G2/M. Mechanistically, this cell cycle transitioning is triggered by a HIF2α-directed transcriptional program. The response is accompanied by increased expression of cell cycle-associated proteins, including CDK1, and reversible activation of the canonical mitogen-activated MEK-ERK proliferation pathway. CDK1 associated SAMHD1 phosphorylation at T592 in hypoxic macrophages renders them hyper-susceptible to lentiviral transduction. Furthermore, PHD inhibitors, which activate HIFs, are able to recapitulate HIF2α-dependent cell cycle entry in macrophages, as well as susceptibility to lentiviral transduction. Finally, we demonstrate that tumour associated macrophages (TAM) in lung cancers exhibit transcriptomic profiles representing responses to low oxygen and cell cycle progression at single cell level. This work uncovers HIF2α driven macrophage cell cycle progression in low oxygen conditions that culminates in SAMHD1 phosphorylation and high susceptibility to lentiviral transduction. These findings have implications for inflammation, neoplasia and pathogen defence.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3