One LLM is not Enough: Harnessing the Power of Ensemble Learning for Medical Question Answering

Author:

Yang HanORCID,Li Mingchen,Zhou Huixue,Xiao Yongkang,Fang Qian,Zhang RuiORCID

Abstract

ABSTRACTObjectiveTo enhance the accuracy and reliability of diverse medical question-answering (QA) tasks and investigate efficient approaches deploying the Large Language Models (LLM) technologies, We developed a novel ensemble learning pipeline by utilizing state-of-the-art LLMs, focusing on improving performance on diverse medical QA datasets.Materials and MethodsOur study employs three medical QA datasets: PubMedQA, MedQA-USMLE, and MedMCQA, each presenting unique challenges in biomedical question-answering. The proposed LLM-Synergy framework, focusing exclusively on zero-shot cases using LLMs, incorporates two primary ensemble methods. The first is a Boosting-based weighted majority vote ensemble, where decision-making is expedited and refined by assigning variable weights to different LLMs through a boosting algorithm. The second method is Cluster-based Dynamic Model Selection, which dynamically selects the most suitable LLM votes for each query, based on the characteristics of question contexts, using a clustering approach.ResultsThe Majority Weighted Vote and Dynamic Model Selection methods demonstrate superior performance compared to individual LLMs across three medical QA datasets. Specifically, the accuracies are 35.84%, 96.21%, and 37.26% for MedMCQA, PubMedQA, and MedQA-USMLE, respectively, with the Majority Weighted Vote. Correspondingly, the Dynamic Model Selection yields slightly higher accuracies of 38.01%, 96.36%, and 38.13%.ConclusionThe LLM-Synergy framework with two ensemble methods, represents a significant advancement in leveraging LLMs for medical QA tasks and provides an innovative way of efficiently utilizing the development with LLM Technologies, customing for both existing and potentially future challenge tasks in biomedical and health informatics research.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. Biomedical question answering: A survey

2. Clark P , Cowhey I , Etzioni O , et al. Think you have Solved Question Answering? Try ARC, the AI2ai2 Reasoning Challenge. arXiv preprint arXiv 2018:1803.05457.

3. Question answering in restricted domains: An overview;Computational Linguistics,2007

4. Biomedical question answering: a survey of approaches and challenges;ACM Computing Surveys (CSUR,2022

5. A review on medical textual question answering systems based on deep learning approaches;Applied Sciences,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3