SurfDock is a Surface-Informed Diffusion Generative Model for Reliable and Accurate Protein-ligand Complex Prediction

Author:

Cao Duanhua,Chen Mingan,Zhang Runze,Yu Jie,Jiang Xinyu,Fan Zhehuan,Zhang Wei,Zheng MingyueORCID

Abstract

ABSTRACTIn the field of structure-based drug design, accurately predicting the binding conformation of ligands to proteins is a long-standing objective. Despite recent advances in deep learning yielding various methods for predicting protein-ligand complex structures, these AI-driven approaches frequently fall short of traditional docking methods in practice and often yield structures that lack physical and chemical plausibility. To overcome these limitations, we present SurfDock, an advanced geometric diffusion network, distinguished by its ability to integrate multiple protein representations including protein sequence, three-dimensional structural graphs, and surface-level details into its equivariant architecture. SurfDock employs a generative diffusion model on a non-Euclidean manifold, enabling precise optimization of molecular translations, rotations, and torsions for reliable binding poses generation. Complemented by a mixture density network for scoring using the same comprehensive representation, SurfDock achieves significantly improved docking success rates over all existing methods, excelling in both accuracy and adherence to physical constraints. Equipped with post-docking energy minimization as an optional feature, the plausibility of generated poses is further enhanced. Importantly, SurfDock demonstrates excellent generalizability to unseen proteins and extensibility to virtual screening tasks with state-of-the-art performance. We consider it a transformative contribution that could serve as an invaluable asset in structure-based drug design.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3