Matrix Linear Models for connecting metabolite composition to individual characteristics

Author:

Farage GregoryORCID,Zhao ChenhaoORCID,Choi Hyo YoungORCID,Garrett Timothy J.ORCID,Kechris KaterinaORCID,Elam Marshall B.ORCID,Sen ŚaunakORCID

Abstract

AbstractHigh-throughput metabolomics data provide a detailed molecular window into biological processes. We consider the problem of assessing how the association of metabolite levels with individual (sample) characteristics such as sex or treatment may depend on metabolite characteristics such as pathway. Typically this is one in a two-step process: In the first step we assess the association of each metabolite with individual characteristics. In the second step an enrichment analysis is performed by metabolite characteristics among significant associations. We combine the two steps using a bilinear model based on the matrix linear model (MLM) framework we have previously developed for high-throughput genetic screens. Our framework can estimate relationships in metabolites sharing known characteristics, whether categorical (such as type of lipid or pathway) or numerical (such as number of double bonds in triglycerides). We demonstrate how MLM offers flexibility and interpretability by applying our method to three metabolomic studies. We show that our approach can separate the contribution of the overlapping triglycerides characteristics, such as the number of double bonds and the number of carbon atoms. The proposed method have been implemented in the open-source Julia package,MatrixLM. Data analysis scripts with example data analyses are also available.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3