Improving generalizability for MHC-I binding peptide predictions through structure-based geometric deep learning

Author:

Marzella Dario F.ORCID,Crocioni GiuliaORCID,Radusinović TadijaORCID,Lepikhov Daniil,Severin Heleen,Bodor Dani L.ORCID,Rademaker Daniel T.ORCID,Lin ChiaYu,Georgievska SonjaORCID,Renaud NicolasORCID,Kessler Amy L.ORCID,Lopez-Tarifa PabloORCID,Buschow SonjaORCID,Bekkers ErikORCID,Xue Li C.ORCID

Abstract

AbstractUnderstanding MHC peptide presentation is crucial for pathogen recognition, autoimmune disease treatment, and cancer immunotherapy development.In silicoprediction of MHC-bound peptides is essential for cost-effective therapy design. However, state-of-the-art sequence-based (SeqB) methods encounter challenges in sensitivity to data biases and limited generalizability, particularly for less-studied MHC alleles. We hypothesize that structure-based (StrB) methods can enhance generalization by leveraging encoded physics and geometric rules. Introducing three supervised StrB geometric deep learning (GDL) approaches, we demonstrate their superior generalization outperforming two SeqB methods by 5 to 11% in AUC. To enhance data efficiency, we present a self-supervised learning approach, 3D-SSL, surpassing SeqB methods without using binding affinity data. We demonstrated StrB method resilience to biases in binding data using a case study on HBV vaccine design. These findings emphasize the capacity of structure-based methods to enhance generalizability and efficiently use limited data, bearing implications for data-intensive fields like T-cell receptor specificity predictions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3