Neuronal avalanches in temporal lobe epilepsy as a diagnostic tool: a noninvasive investigation of intrinsic resting state dynamics

Author:

Corsi Marie-ConstanceORCID,Lopez Emahnuel TroisiORCID,Sorrentino PierpaoloORCID,Danieli Alberto,Cuozzo Simone,Bonanni PaloORCID,Duma Gian MarcoORCID

Abstract

AbstractBackground and ObjectivesThe epilepsy diagnosis still represents a complex process, with misdiagnosis reaching 40%. Here, we aimed at building an automatable workflow, to help the clinicians in the diagnostic process, differentiating between controls and a population of patients with temporal lobe epilepsy (TLE). While primarily interested in correctly classifying the participants, we used data features providing hints on the underlying pathophysiological processes. Specifically, we hypothesized that neuronal avalanches (NA) may represent a feature that encapsulates the rich brain dynamics better than the classically used functional connectivity measures (Imaginary Coherence; ImCoh).MethodsWe recorded 10 minutes of resting state activity with high-density scalp electroencephalography (hdEEG; 128 channels). We analyzed large-scale activation bursts (NA) from source activation, to capture altered dynamics. Then, we used machine-learning algorithms to classify epilepsy patients vs. controls, and we described the goodness of the classification as well as the effect of the durations of the data segments on the performance.ResultsUsing a support vector machine (SVM), we reached a classification accuracy of 0.87 ± 0.10 (SD) and an area under the curve (AUC) of 0.94 ± 0.06. The use of avalanches-derived features, generated a mean increase of 16% in the accuracy of diagnosis prediction, compared to ImCoh. Investigating the main features informing the model, we observed that the dynamics of the entorhinal cortex, superior and inferior temporal gyri, cingulate cortex and prefrontal dorsolateral cortex were informing the model with NA. Finally, we studied the time-dependent accuracy in the classification. While the classification performance grows with the duration of the data length, there are specific lengths, at 30s and 180s at which the classification performance becomes steady, with intermediate lengths showing greater variability. Classification accuracy reached a plateau at 5 minutes of recording.DiscussionWe showed that NA represents a better EEG feature for an automated epilepsy identification, being related with neuronal dynamics of pathology-relevant brain areas. Furthermore, the presence of specific durations and the performance plateau might be interpreted as the manifestation of the specific intrinsic neuronal timescales altered in epilepsy. The study represents a potentially automatable and noninvasive workflow aiding the clinicians in the diagnosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3