DeepACSON: Automated Segmentation of White Matter in 3D Electron Microscopy

Author:

Abdollahzadeh AliORCID,Belevich IlyaORCID,Jokitalo EijaORCID,Sierra AlejandraORCID,Tohka JussiORCID

Abstract

ABSTRACTAutomated segmentation techniques are essential to tracing the entirety of ultrastructures in large three-dimensional electron microscopy (3D-EM) images of the brain tissue. Current automated techniques use deep convolutional neural networks (DCNNs) and rely on high-contrast cellular membranes to trace a small number of neuronal processes in very high-resolution EM datasets. We developed DeepACSON to segment large field-of-view, low-resolution 3D-EM datasets of white matter where tens of thousands of myelinated axons traverse the tissue. DeepACSON performs DCNN-based semantic segmentation and shape decomposition-based instance segmentation. With its top-down design, DeepACSON manages to account for severe membrane discontinuities inescapable with the low-resolution imaging. In particular, the instance segmentation of DeepACSON uses the tubularity of myelinated axons, decomposing an under-segmented myelinated axon into its constituent axons. We applied DeepACSON to ten serial block-face scanning electron microscopy datasets of rats after sham-operation or traumatic brain injury, segmenting hundreds of thousands of long-span myelinated axons, thousands of cell nuclei, and millions of mitochondria with excellent evaluation scores. DeepACSON quantified the morphology and spatial aspects of white matter ultrastructures, capturing nanoscopic morphological alterations five months after the injury.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain Ultrastructure: Putting the Pieces Together;Frontiers in Cell and Developmental Biology;2021-02-18

2. Multiscale Imaging Approach for Studying the Central Nervous System: Methodology and Perspective;Frontiers in Neuroscience;2020-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3