MarkovHC: Markov hierarchical clustering for the topological structure of high-dimensional single-cell omics data

Author:

Wang Zhenyi,Zhong Yanjie,Ye Zhaofeng,Zeng Lang,Chen Yang,Shi Minglei,Qian Minping,Zhang Michael Q.

Abstract

AbstractDistinguishing cell types and cell states is one of the fundamental questions in single-cell studies. Meanwhile, exploring the lineage relations among cells and finding the path and critical points in the cell fate transition are also of great importance.Existing unsupervised clustering methods and lineage trajectory reconstruction methods often face several challenges such as clustering data of arbitrary shapes, tracking precise trajectories and identifying critical points. Certain adaptive landscape approach1–3, which constructs a pseudo-energy landscape of the dynamical system, may be used to explore such problems. Thus, we propose Markov hierarchical clustering algorithm (MarkovHC), which reconstructs multi-scale pseudo-energy landscape by exploiting underlying metastability structure in an exponentially perturbed Markov chain4. A Markov process describes the random walk of a hypothetically traveling cell in the corresponding pseudo-energy landscape over possible gene expression states. Technically, MarkovHC integrates the tasks of cell classification, trajectory reconstruction, and critical point identification in a single theoretical framework consistent with topological data analysis (TDA)5.In addition to the algorithm development and simulation tests, we also applied MarkovHC to diverse types of real biological data: single-cell RNA-Seq data, cytometry data, and single-cell ATAC-Seq data. Remarkably, when applying to single-cell RNA-Seq data of human ESC derived progenitor cells6, MarkovHC not only could successfully identify known cell types, but also discover new cell types and stages. In addition, when using MarkovHC to analyze single-cell RNA-Seq data of human preimplantation embryos in early development7, the hierarchical structure of the lineage trajectories was faithfully reconstituted. Furthermore, the critical points representing important stage transitions had also been identified by MarkovHC from early gastric cancer data8.In summary, these results demonstrate that MarkovHC is a powerful tool based on rigorous metastability theory to explore hierarchical structures of biological data, to identify a cell sub-population (basin) and a critical point (stage transition), and to track a lineage trajectory (differentiation path).HighlightsMarkovHC explores the topology hierarchy in high-dimensional data.MarkovHC can find clusters (basins) and cores (attractors) of clusters in different scales.The trajectory of state transition (transition paths) and critical points in the process of state transition (critical points) among clusters can be tracked.MarkovHC can be applied on diverse types of single-cell omics data.

Publisher

Cold Spring Harbor Laboratory

Reference119 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3