Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases

Author:

Gado Japheth E.ORCID,Harrison Brent E.,Sandgren Mats,Ståhlberg JerryORCID,Beckham Gregg T.,Payne Christina M.ORCID

Abstract

AbstractFamily 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These important enzymes are often bimodular, comprised of a catalytic domain attached to a carbohydrate binding module (CBM) via a flexible linker, and exhibit a long active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical biological and industrial importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, using the number of residues in the active-site loops as features, were able discriminate GH7 CBHs and EGs with up to 99% accuracy. The lengths of the A4, B2, B3, and B4 loops were strongly correlated with functional subtype across the GH7 family. Position-specific classification rules were derived such that specific amino acids at 42 different sequence positions predicted the functional subtype with accuracies greater than 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. We propose these positions play vital roles in the functional variation of GH7 cellulases. Taken together, our results complement numerous experimental findings and present functional relationships that can be applied when prospecting GH7 cellulases from nature, for sequence annotation, and to understand or manipulate function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3