Abstract
ABSTRACTLoss of metabolic homeostasis is one of the hallmarks of the aging process that might contribute to pathogenesis by creating a permissive landscape over which neurodegenerative diseases can take hold. AMPK, a conserved energy sensor, extends lifespan and is protective in some neurodegenerative models. AMPK regulates mitochondrial homeostasis and morphology, however, whether mitochondrial regulation causally links AMPK to protection against loss of neuronal function with aging and diseases remains unclear. Here we use an associative learning protocol in C. elegans as a readout of neuronal function and show that AMPK activation enhances associative learning and prevents age-related loss of learning capacity. AMPK promotes neuronal mitochondrial fusion and mitochondrial fragmentation via fzo-1 deletion blocks AMPK’s effects on associative learning. Restoring mitochondrial fusion capacity specifically in the neurons rescued learning capacity downstream of AMPK. Finally, AMPK activation rescues neuronal Aβ1-42 induced loss of associative learning. Overall, our results suggest that targeting neuronal metabolic flexibility may be a viable therapeutic option to restore neuronal function in the context of aging and neurodegenerative diseases.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献